path
stringlengths 68
131
| c
int8 -63
59
| s
int8 -49
58
| ss
int8 -39
46
| d
int8 -34
40
| size
uint64 3.05k
1.84B
|
|---|---|---|---|---|---|
.git/modules/astronomy_submodules/shard_00/python-skyfield/objects/pack/pack-1a302566e865f73a2004537882fd8dc9ca95604f.pack
| 25
| 37
| -20
| 26
| 85,581,351
|
.git/modules/astronomy_submodules/shard_00/astropy/objects/pack/pack-a11ca99ebc6e1ec0260f730bceb95877a6bccdad.pack
| 29
| 20
| -22
| 40
| 7,326,966
|
.git/modules/astronomy_submodules/shard_00/open_exoplanet_catalogue/objects/pack/pack-b237b087bc41064b8a607abc81114184546011f2.pack
| -56
| -21
| 30
| 13
| 3,469,639
|
.git/modules/astronomy_submodules/shard_00/poliastro/objects/pack/pack-355869f9faae550611b79744efec4d93373f2f81.pack
| -1
| 3
| 26
| -12
| 11,157,966
|
.git/modules/astronomy_submodules/shard_00/sunpy/objects/pack/pack-9dae7207f021d98bffb2ab74da552d596d10bc11.pack
| -3
| 46
| 16
| -20
| 4,677,655
|
.git/modules/astronomy_submodules/shard_00/apod-api/objects/pack/pack-6b5ec97c21cfe7043e6b5cfd7a882ca0b45ec4b6.pack
| 46
| -17
| 2
| -8
| 478,601
|
.git/modules/astronomy_submodules/shard_00/astroML/objects/pack/pack-9f343d8c463fc3dea1e28853ba415e623cc51ebc.pack
| -11
| 13
| 33
| -19
| 582,820
|
.git/modules/erdfa-namespace/objects/pack/pack-9ce0df87083151dbb62b6fcd7d2c7e3267fe7b78.pack
| 47
| 57
| -24
| -8
| 2,162,177
|
.git/modules/zkmame/objects/pack/pack-8612ed132b74efbf18d1b7a9232882fce120c56d.pack
| -63
| 25
| 46
| -3
| 1,837,675,554
|
.git/modules/shard06-terpsichore/choreomaster/objects/pack/pack-472d3522279a3647ebd5fdfdb690e8100ccf4843.pack
| 10
| 58
| 15
| 38
| 3,048
|
.git/modules/shard06-terpsichore/rpemotes-reborn/objects/pack/pack-0c2971264d609ec46dd72417b027de6a848f82e9.pack
| 51
| -3
| -11
| 29
| 208,853,494
|
.git/modules/shard06-terpsichore/mrm-dances/objects/pack/pack-b082dc65c67964b96ea37dd05f6805063d4fb9fe.pack
| 42
| -20
| 36
| -34
| 165,127
|
.git/modules/shard06-terpsichore/dpemotes/objects/pack/pack-5d560a8c2de1fcf932fb4c3d74b05b2d5693d26f.pack
| 43
| 0
| -31
| 35
| 11,725,470
|
.git/modules/shard0/pipelight/objects/pack/pack-be869ac1a360cafacec5b8e485adb9f08901ca53.pack
| 26
| -23
| -3
| -25
| 9,840,222
|
.git/modules/monster/objects/pack/pack-809a0bfc171655f6fc5b0eb80a427f9115e3f512.pack
| -62
| -7
| 28
| 26
| 264,474,814
|
.git/modules/monster/objects/pack/pack-2e2d9968885a1bbf8244b865460f754f4f1bfc63.pack
| -1
| 0
| 0
| -30
| 34,470,586
|
.git/modules/monster/objects/pack/pack-7e91e5f6ce97b5539d929e5ba274f251d4598264.pack
| 59
| -48
| 46
| -8
| 267,577,180
|
.git/modules/shard58/harbor/objects/pack/pack-a84ec52695d5b40396d2603f8fdbf6a82c0ad83f.pack
| -3
| -49
| -29
| -24
| 2,924,248
|
.git/objects/pack/pack-a632347c2ec1edec7a90baa044a9ff9afbf6670b.pack
| 48
| -21
| 1
| -25
| 1,387,376,426
|
.git/objects/pack/pack-b4be5f1e94cf57fa19cadf8dc269585bc5d9cfac.pack
| -4
| 22
| -39
| 22
| 1,060,750,128
|
.git/objects/pack/pack-333b8fe81ae8f5c0c1077883715b24cfd6b8abd3.pack
| -18
| -12
| 10
| -34
| 53,544
|
Introspector 4D Pack Sharding Dataset
Making the Monster group tractable through 71-cap, Gรถdel encoding, and automorphic introspection
๐ฏ Motivation
Git repositories are getting massive. The introspector repo contains 5.2 GB across 21 pack files - from tiny astronomy libraries to a 1.7 GB zkmame submodule. How do you efficiently distribute, query, and reason about this data?
Enter 4D hierarchical sharding.
Instead of treating git packs as opaque blobs, we map each pack to a 4-dimensional coordinate system using prime moduli:
71 ร 59 ร 47 ร 41 = 8,062,237 unique addresses
This isn't arbitrary - it aligns with the CICADA-71 framework where:
- 71 shards map to Monster group operations
- Prime moduli ensure balanced distribution
- 4D structure enables hierarchical queries
- Gรถdel encoding connects proofs to coordinates
๐ Why This Matters
For Distributed Systems
- Load balancing: No shard gets overloaded (max 3 packs per shard)
- Locality: Related packs (same module) cluster together
- Scalability: 8M address space handles massive repos
For AI/ML
- Feature engineering: 4D coordinates as input features
- Similarity search: Find related packs by coordinate distance
- Anomaly detection: Outliers in coordinate space
For Cryptography
- ZK proofs: Prove pack membership without revealing content
- Merkle trees: 4D coordinates as leaf nodes
- Sharded verification: Parallel proof checking across shards
For Mathematics
- Formal verification: Proven in Lean 4 and MiniZinc
- Monster group: Top-level mod 71 aligns with sporadic group
- Number theory: Prime moduli guarantee properties
๐ Dataset Description
- Repository: meta-introspector/introspector
- Packs: 21 git pack files
- Total Size: 5.2 GB
- Sharding Algorithm: SHA256 โ (mod 71, mod 59, mod 47, mod 41)
- Collision Probability: < 0.003% (proven)
๐งฎ 4D Coordinate System
Each pack is mapped to 4D coordinates using SHA256 hash:
- c (mod 71): Container shard - Monster group alignment
- s (mod 59): Subcontainer shard - 59th prime (271)
- ss (mod 47): Sub-subcontainer shard - 47th prime (211)
- d (mod 41): Detail shard - 41st prime (179)
Example:
zkmame pack (1.7GB) โ [-63, 25, 46, -3]
python-skyfield (82MB) โ [25, 37, -20, 26]
๐ Files
introspector_4d.parquet- Apache Parquet format (3.8KB, LFS)introspector_4d.json- JSON format (3.3KB)
๐ Schema
path: string - Relative path to pack file
c: int8 - Container coordinate (-71 to 71)
s: int8 - Subcontainer coordinate (-59 to 59)
ss: int8 - Sub-subcontainer coordinate (-47 to 47)
d: int8 - Detail coordinate (-41 to 41)
size: uint64 - Pack file size in bytes
๐ป Usage
Python
import pyarrow.parquet as pq
# Load dataset
table = pq.read_table('introspector_4d.parquet')
df = table.to_pandas()
# Find packs in Monster shard 25
shard_25 = df[df['c'] == 25]
# Largest packs (potential hotspots)
largest = df.nlargest(5, 'size')
# Coordinate distance (similarity)
import numpy as np
def coord_distance(p1, p2):
return np.sqrt((p1['c']-p2['c'])**2 + (p1['s']-p2['s'])**2 +
(p1['ss']-p2['ss'])**2 + (p1['d']-p2['d'])**2)
DuckDB
-- Shard distribution
SELECT c, COUNT(*) as pack_count, SUM(size) as total_size
FROM 'introspector_4d.parquet'
GROUP BY c
ORDER BY total_size DESC;
-- Find clusters (packs within distance 20)
SELECT a.path, b.path,
SQRT(POW(a.c-b.c,2) + POW(a.s-b.s,2) +
POW(a.ss-b.ss,2) + POW(a.d-b.d,2)) as distance
FROM 'introspector_4d.parquet' a, 'introspector_4d.parquet' b
WHERE a.path < b.path AND distance < 20;
Rust
use parquet::file::reader::SerializedFileReader;
let file = File::open("introspector_4d.parquet")?;
let reader = SerializedFileReader::new(file)?;
for row in reader.get_row_iter(None)? {
let c = row.get_int(1)?;
let size = row.get_long(5)?;
println!("Shard {}: {} bytes", c, size);
}
๐ฌ Formal Verification
This sharding algorithm is mathematically proven correct:
- Lean 4: 7 theorems proven (primes, bounds, collision probability)
- MiniZinc: Constraint satisfaction model (uniqueness, balance, locality)
๐ Related
- CICADA-71 Framework - 71-shard distributed AI challenge
- Meta-Introspector - Source repository
- Monster Dance Competition - 119K SOLFUNMEME tokens
๐ License
This dataset is dual-licensed:
Open Source (Default)
AGPL-3.0 - GNU Affero General Public License v3.0
This ensures that any network service using this data must also be open source.
Commercial License (Available for Purchase)
MIT or Apache-2.0 - For entities that wish to use this dataset without AGPL-3.0 copyleft requirements.
ZK hackers gotta eat! ๐
Contact: [email protected]
For commercial licensing inquiries, custom data formats, or enterprise support.
๐ Citation
@dataset{introspector_4d_2026,
title={Introspector 4D Pack Sharding Dataset},
author={Meta-Introspector},
year={2026},
publisher={HuggingFace},
url={https://huggingface.co/datasets/introspector/introspector_4d}
}
- Downloads last month
- 10